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We have determined how most of the transcriptional regulators encoded in the
eukaryote Saccharomyces cerevisiae associate with genes across the genome in
living cells. Just as maps of metabolic networks describe the potential pathways
that may be used by a cell to accomplish metabolic processes, this network of
regulator-gene interactions describes potential pathways yeast cells can use to
regulate global gene expression programs. We use this information to identify
network motifs, the simplest units of network architecture, and demonstrate
that an automated process can use motifs to assemble a transcriptional reg-
ulatory network structure. Our results reveal that eukaryotic cellular functions
are highly connected through networks of transcriptional regulators that reg-

ulate other transcriptional regulators.

Genome sequences specify the gene expression
programs that produce living cells, but how
cells control global gene expression programs is
far from understood. Each cell is the product of
specific gene expression programs involving
regulated transcription of thousands of genes.
These transcriptional programs are modified as

"Whitehead Institute for Biomedical Research, Nine
Cambridge Center, Cambridge, MA 02142, USA. 2De-
partment of Biology, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139, USA. 3MIT Laboratory
of Computer Science, 200 Technology Square, Cam-
bridge, MA 02139, USA.

*These authors contributed equally to this work.
tPresent address: Akceli Inc, 1 Hampshire Street,
Cambridge, MA 02139, USA.

iPresent address: Ludwig Institute for Cancer Re-
search, 9500 Gilman Drive, La Jolla, CA 92093, USA.
§Present address: California Institute of Technology,
Pasadena, CA 91125, USA.

To whom correspondence should be addressed. E-
mail: young@wi.mit.edu

cells progress through the cell cycle, in re-
sponse to changes in environment, and during
organismal development (/-5).

Gene expression programs depend on rec-
ognition of specific promoter sequences by
transcriptional regulatory proteins (6-9). Be-
cause these regulatory proteins recruit and reg-
ulate chromatin-modifying complexes and
components of the transcription apparatus,
knowledge of the sites bound by all the tran-
scriptional regulators encoded in a genome can
provide the information necessary to nucleate
models for transcriptional regulatory networks.
With the availability of complete genome se-
quences and development of a method for ge-
nome-wide binding analysis (also known as
genome-wide location analysis), investigators
can identify the set of target genes bound in
vivo by each of the transcriptional regulators
that are encoded in a cell’s genome. This
approach has been used to identify the
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genomic sites bound by nearly a dozen reg-
ulators of transcription (/0—13) and several
regulators of DNA synthesis (/4) in yeast.

Experimental design. We used genome-
wide location analysis to investigate how
yeast transcriptional regulators bind to pro-
moter sequences across the genome (Fig.
1A). All 141 transcription factors listed in the
Yeast Proteome Database (/5) and reported
to have DNA binding and transcriptional ac-
tivity were selected for study. Yeast strains
were constructed so that each of the transcrip-
tion factors contained a myc epitope tag. To
increase the likelihood that tagged factors
were expressed at physiologic levels, we in-
troduced epitope tag coding sequences into
the genomic sequences encoding the COOH
terminus of each regulator, as described in
(16). We confirmed appropriate insertion of
the tag and expression of the tagged protein
by polymerase chain reaction and immuno-
blot analysis. Introduction of an epitope tag
might be expected to affect the function of
some transcriptional regulators; for 17 of the
141 factors, we were not able to obtain viable
tagged cells, despite three attempts to tag each
regulator. Not all the transcriptional regulators
were expected to be expressed at detectable
levels when yeast cells were grown in rich
medium, but immunoblot analysis showed that
106 of the 124 tagged regulator proteins could
be detected under these conditions.

We performed a genome-wide location
analysis experiment (/0) for each of the 106
yeast strains that expressed epitope-tagged
regulators (/7, 18). Each tagged strain was
grown in three independent cultures in rich
medium (yeast extract, peptone, dextrose).
Genome-wide location data were subjected to
quality control filters and normalized, and the
ratio of immunoprecipitated to control DNA
was determined for each array spot. We cal-
culated a confidence value (P value) for each
spot from each array by using an error model
(19). The data for each of the three samples in
an experiment were combined by a weighted
average method (/9); each ratio was weight-
ed by P value and then averaged. Final P
values for these combined ratios were then
calculated (17, 18).

Given the properties of the biological sys-
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Fig. 1. Systematic genome-wide location analysis for yeast transcription
regulators. (A) Methodology. Yeast transcriptional regulators were
tagged by introducing the coding sequence for a c-myc epitope tag into
the normal genomic locus for each regulator. Of the yeast strains
constructed in this fashion, 106 contained a single epitope-tagged reg-
ulator whose expression could be detected in rich growth conditions.
Chromatin immunoprecipitation (ChIP) was performed on each of these

tem studied here (cell populations, DNA bind-
ing factors capable of binding to both specific
and nonspecific sequences) and the expectation
of noise in microarray-based data, it was im-
portant to use error models to obtain a proba-
bilistic assessment of regulator location data.
The total number of protein-DNA interactions
in the location analysis data set, using a range of
P value thresholds, is shown in Fig. 1B. We
selected specific P value thresholds to facilitate
discussion of a subset of the data at a high
confidence level, but note that this artificially
imposes a “bound or not bound” binary deci-
sion for each protein-DNA interaction.

We generally describe results obtained at
a P value threshold of 0.001 because our
analysis indicates that this threshold maxi-
mizes inclusion of legitimate regulator-DNA
interactions and minimizes false positives.
Various experimental and analytical methods
indicate that the frequency of false positives
in the genome-wide location data at the 0.001
threshold is 6% to 10% (17, 18). For exam-
ple, conventional, gene-specific chromatin
immunoprecipitation experiments have con-
firmed 93 of 99 binding interactions (involv-
ing 29 different regulators) that were identi-
fied by location analysis data at a threshold P
value of 0.001. Use of a high-confidence
threshold should underestimate the regulator-
DNA interactions that actually occur in these
cells. We estimate that about one-third of the
actual regulator-DNA interactions in cells are
not reported at the 0.001 threshold (17, 18).

Regulator density. We observed nearly
4000 interactions between regulators and
promoter regions at a P value threshold of
0.001. The promoter regions of 2343 of
6270 yeast genes (37%) were bound by one
or more of the 106 transcriptional regula-
tors in yeast cells grown in rich medium.
Many yeast promoters were bound by mul-
tiple transcriptional regulators (Fig. 2A), a
feature previously associated with gene
regulation in higher eukaryotes (20, 21),
suggesting that yeast genes are also fre-
quently regulated through combinations of
regulators. More than one-third of the pro-

Chromatin IP to enrich
promoters bound
by regulator in vivo
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106 strains. Promoter regions enriched through the ChIP procedure were
identified by hybridization to microarrays containing a genome-wide set
of yeast promoter regions. (B) Effect of P value threshold. The sum of all
regulator-promoter region interactions is displayed as a function of
varying P value thresholds applied to the entire location data set for the
106 regulators. More stringent P values reduce the number of interac-
tions reported but decrease the likelihood of false-positive results.
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Fig. 2. Genome-wide distribution of transcriptional regulators. (A) Plot of the number of regulators
bound per promoter region. The distribution for the actual location data (red circles) is shown
alongside the distribution expected from the same set of P values randomly assigned among
regulators and intergenic regions (white circles). At a P value threshold of 0.001, significantly more
intergenic regions bind four or more regulators than expected by chance. (B) Distribution of the

number of promoter regions bound per regulator.

moter regions that are bound by regulators
were bound by two or more regulators (P
value threshold = 0.001), and, relative to
the expected distribution from randomized
data, a disproportionately high number of
promoter regions were bound by four or
more regulators. Because of the stringency
of the P value threshold, we expect that this
represents an underestimate of regulator
density.

The number of different promoter regions
bound by each regulator in cells grown in rich
medium ranged from 0 to 181 (P value
threshold = 0.001), with an average of 38
promoter regions per regulator (Fig. 2B). The
regulator Abfl bound the largest number
(181) of promoter regions. Regulators that
should be active under growth conditions oth-
er than yeast extract, peptone, and dextrose
were typically found, as expected, to bind the
smallest number of promoter regions. For
example, Thi2, which activates transcription
of thiamine biosynthesis genes under condi-
tions of thiamine starvation (22, 23), was
among the regulators that bound the smallest

number (3) of promoters. Identification of a
set of promoter regions that are bound by
specific regulators allowed us to predict se-
quence motifs that are bound by these regu-
lators (17, 18).

Network motifs. The simplest units of
commonly used transcriptional regulatory
network architecture, or network motifs, pro-
vide specific regulatory capacities such as
positive and negative feedback loops. We
used the genome-wide location data to iden-
tify six regulatory network motifs: autoregu-
lation, multicomponent loops, feedforward
loops, single-input, multi-input, and regulator
chain (Fig. 3). These motifs suggest models
for regulatory mechanisms that can be tested.
Descriptions of the algorithms used to iden-
tify motifs and a complete compilation of
motifs can be obtained in (/8).

An autoregulation motif consists of a regu-
lator that binds to the promoter region of its
own gene. We identified 10 autoregulation mo-
tifs with genome-wide location data for the 106
regulators (P value threshold = 0.001), which
suggests that about 10% of yeast genes encod-
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Fig. 3. Examples of network motifs in the yeast regulatory network. Regulators are represented by
blue circles; gene promoters are represented by red rectangles. Binding of a regulator to a promoter
is indicated by a solid arrow. Genes encoding regulators are linked to their respective regulators by
dashed arrows. For example, in the autoregulation motif, the Ste12 protein binds to the STE72
gene, which is transcribed and translated into Ste12 protein. These network motifs were uncovered
by searching binding data with various algorithms. For details on the algorithms used and a full list

of motifs found, see (78).

ing regulators are autoregulated. This percent-
age does not change substantially at less strin-
gent P value thresholds. In contrast, studies of
Escherichia coli genetic regulatory networks
indicate that most (52% to 74%) prokaryotic
genes encoding transcriptional regulators are
autoregulated (24, 25).

Autoregulation is thought to provide sev-
eral selective growth advantages, including
reduced response time to environmental stim-
uli, decreased biosynthetic cost of regulation,
and increased stability of gene expression
(24-28). For example, upon exposure to mat-
ing pheromone, the concentrations of the
pheromone-responsive Stel2 transcriptional
regulator rapidly increase because Stel2
binds to and up-regulates its own gene (10,
29) (Fig. 3). The consequent increase in
Stel2 protein leads to the binding of other
genes required for the mating process (10).

A multicomponent loop motif consists of a
regulatory circuit whose closure involves two
or more factors (Fig. 3). We observed three
multicomponent loop motifs in the location
data for 106 regulators (P value threshold =
0.001). The closed-loop structure provides the
capacity for feedback control and offers the
potential to produce bistable systems that can

switch between two alternative states (30). The
multicomponent loop motif has yet to be iden-
tified in bacterial genetic networks (24, 25).

Feedforward loop motifs contain a regulator
that controls a second regulator and have the
additional feature that both regulators bind a
common target gene (Fig. 3). The regulator
location data reveal that feedforward loop ar-
chitecture has been highly favored during the
evolution of transcriptional regulatory networks
in yeast. We found that 39 regulators are in-
volved in 49 feedforward loops potentially con-
trolling 240 genes in the yeast network (about
10% of genes that are bound in the genome-
wide location data set).

In principle, a feedforward loop can pro-
vide several features to a regulatory circuit.
The feedforward loop may act as a switch
that is designed to be sensitive to sustained
rather than transient inputs (25). Feedfor-
ward loops have the potential to provide
temporal control of a process, because ex-
pression of the ultimate target gene may
depend on the accumulation of adequate
levels of the master and secondary regula-
tors. Feedforward loops may provide a
form of multistep ultrasensitivity (37), as
small changes in the level or activity of the

master regulator at the top of the loop
might be amplified at the ultimate target
gene because of the combined action of the
master regulator and a second regulator that
is under the control of the master regulator.

Single-input motifs contain a single regu-
lator that binds a set of genes under a specific
condition. Single-input motifs are potentially
useful for coordinating a discrete unit of bi-
ological function, such as a set of genes that
code for the subunits of a biosynthetic appa-
ratus or enzymes of a metabolic pathway. For
example, several genes of the leucine biosyn-
thetic pathway are controlled by the Leu3
transcriptional regulator (Fig. 3).

Multi-input motifs consist of a set of reg-
ulators that bind together to a set of genes.
We found 295 combinations of two or more
regulators that could bind to a common set of
promoter regions. This motif offers the po-
tential for coordinating gene expression
across a wide variety of growth conditions.
For example, each of the regulators bound to
a set of genes can be responsible for regulat-
ing those genes in response to a unique input.
In this manner, two different regulators re-
sponding to two different inputs would allow
coordinate expression of the set of genes
under these two different conditions.

Regulator chain motifs consist of chains of
three or more regulators in which one regulator
binds the promoter for a second regulator, the
second binds the promoter for a third regulator,
and so forth (Fig. 3). This network motif is
observed frequently in the location data for
yeast regulators; we found 188 regulator chain
motifs, which varied in size from 3 to 10 reg-
ulators. The chain represents the simplest cir-
cuit logic for ordering transcriptional events in a
temporal sequence. The most straightforward
form of this appears in the regulatory circuit of
the cell cycle, where regulators functioning at
one stage of the cell cycle regulate the expres-
sion of factors required for entry into the next
stage of the cell cycle (73).

The regulatory motifs described above
suggest models for gene regulatory mecha-
nisms whose predictions can be tested with
experimental data. One regulatory motif that
caught our attention involved ribosomal pro-
tein genes; ribosomes are important protein
biosynthetic machines, but transcriptional
regulation of ribosomal protein genes is not
well understood. Fhll, a protein whose func-
tion was not previously known, forms a sin-
gle-input regulatory motif consisting of es-
sentially all ribosomal protein genes, but little
else. No other regulator studied here exhibit-
ed this behavior. This predicts that loss of
Fhll function should have a profound effect
on ribosome biosynthesis if no other regula-
tors are capable of taking its place. Indeed, a
mutation in Fhll causes severe defects in
ribosome biosynthesis (32), an observation
that was difficult to interpret previously in the
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absence of the genome-wide location data.
Many ribosomal protein genes are also com-
ponents of a multi-input motif involving Fhll
and additional regulators (Fig. 3), which sug-
gests that expression of these genes may be
coordinated by multiple regulators under var-
ious growth conditions. This model and oth-
ers suggested by regulatory motifs can be
addressed with future experiments.
Assembling motifs into network struc-
tures. We assume that regulatory network
motifs form building blocks that can be com-
bined into larger network structures. An al-
gorithm was developed that explores all the
genome-wide location data together with the
expression data from over 500 expression
experiments to identify groups of genes that
are both coordinately bound and coordinately
expressed. In brief, the algorithm begins by
defining a set of genes, G, that are bound by
a set of regulators, S, with a P value threshold
0f 0.001. We find a large subset of genes in G

25 OCTOBER 2002
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that are similarly expressed over the entire set
of expression data, and we use those genes to
establish a core expression profile. Genes are
then dropped from G if their expression pro-
file is significantly different from this core
profile. The remainder of the genome is
scanned for genes with expression profiles
that are similar to the core profile. Genes with
a significant match in expression profiles are
then examined to see if the set of regulators S
are bound. At this step, the probability of a
gene being bound by the set of regulators is
used instead of the individual probabilities of
that gene being bound by each of the individ-
ual regulators. Because we are assaying the
combined probability of the set of regulators
being bound and are relying on similarity of
expression patterns, we can relax the P value
for individual binding events and thus recap-
ture information that is lost because of the
use of an arbitrary P value threshold. The
process is repeated until all combinations

e

of genes bound by regulators have been
considered. Additional details of the algo-
rithm are available upon request. The re-
sulting sets of regulators and genes are
essentially multi-input motifs refined for
common expression (MIM-CE). We expect
these to be robust examples of coordinate
binding and expression and therefore useful
for nucleating network models.

We used the refined motifs to construct a
network structure for the yeast cell cycle by
an automatic process that requires no prior
knowledge of the regulators that control tran-
scription during the cell cycle. We selected
the cell cycle regulatory network because of
the importance of this biological process, the
availability of extensive genome-wide ex-
pression data for the cell cycle (2, 3), and the
extensive literature that can be used to ex-
plore features of a network model. Our goal
was to determine whether the computation-
al approach would construct the regulatory

Fig. 4. Model for the yeast cell cycle
transcriptional regulatory network.
A transcriptional regulatory net-
work for the yeast cell cycle was
derived from a combination of
binding and expression data (see
text). Yeast cell morphologies are
depicted during the various stages
of the cell cycle. Each blue box rep-
resents a set of genes bound by a
common set of regulators and co-
expressed throughout the cell cycle.
Text inside each blue box identifies
the common set of regulators that
bind to the set of genes represented
by the box. Each box is positioned
in the cell cycle according to the
time of peak expression levels for
the genes represented by the box.
Regulators, represented by ovals,
are connected to the sets of genes
they regulate by solid lines. The arc
associated with each regulator ef-
fectively defines the period of ac-
tivity for the regulator. Dashed lines
indicate that a gene in the box en-
codes a regulator found in the outer
rings.

Fig. 5. (Right) Network of tran-
scriptional regulators binding to
genes encoding other transcription-
al regulators. All 106 transcriptional
regulators that were subjected to
location analysis in rich medium are
displayed in a circle and segregated
into functional categories on the
basis of the primary functions of
their target genes, as indicated by
the color key. Lines with arrows de-
pict binding of a regulator (P value
threshold = 0.001) to the gene en-
coding another regulator. Circles
with arrows depict binding of a reg-
ulator to the promoter region of its
own gene.

VOL 298 SCIENCE www.sciencemag.org
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logic of the cell cycle from the location and
expression data without previous knowledge
of the regulators involved. We reasoned that
MIM-CEs that are significantly enriched in
genes whose expression oscillates through
the cell cycle (3) would identify the regula-
tors that control these genes. We identified 11
regulators with this approach. To construct
the cell cycle network, we generated a new
set of MIM-CEs by using only the 11 regu-
lators and the cell cycle expression data (3).

To produce a cell cycle transcriptional
regulatory network model, we aligned the
MIM-CEs around the cell cycle on the basis
of peak expression of the genes in the group
by means of an algorithm described in (33)
(Fig. 4). Three features of the resulting net-
work model are notable. First, the computa-
tional approach correctly assigned all the reg-
ulators to stages of the cell cycle, where they
were shown to function in previous studies
(34). Second, two regulators that have been
implicated in cell cycle control but whose
functions were ill-defined (35-37) could be
assigned within the network on the basis of
direct binding data. Third, and most impor-
tant, reconstruction of the regulatory archi-
tecture was automatic and required no prior
knowledge of the regulators that control tran-
scription during the cell cycle. This approach
should represent a general method for con-
structing other regulatory networks.

Coordination of cellular processes.
Transcriptional regulators were often bound to
genes encoding other transcriptional regulators
(Fig. 5). For example, there were many instanc-
es in which transcriptional regulators within a
functional category (for example, cell cycle)
bound to genes encoding regulators within the
same category. We have noted that cell cycle
regulators bound to other cell cycle regulators
(13), and this phenomenon was also apparent
among transcriptional regulators that fall into
the metabolism and environmental response cat-
egories. For example, the metabolic regulator
Gen4 bound to promoters for PUT3 and UGA3,
genes that encode transcriptional regulators for
amino acid and other metabolic functions. The
stress response activator Yap6 bound to the gene
encoding the Rox1 repressor, and vice versa,
which suggests positive and negative feedback
loops.

We also found that multiple transcriptional
regulators within each category were able to
bind to genes encoding regulators that are re-
sponsible for control of other cellular processes.
For example, the cell cycle activators bind to
genes for transcriptional regulators that play
key roles in metabolism (GAT1, GAT3, NRGI,
and SFLI); environmental responses (ROXI,
YAPI1, and ZMS1); development (ASH1, SOK?2,
and MOT3); and DNA, RNA, and protein bio-
synthesis (4BF1). These observations are likely
to explain, in part, how cells coordinate tran-
scriptional regulation of the cell cycle with

RESEARCH ARTICLES

other cellular processes. These connections are
generally consistent with previous experimental
information about the relationships between
cellular processes. For example, the develop-
mental regulator Phdl has been shown to reg-
ulate genes involved in pseudohyphal growth
during certain nutrient stress conditions; we
found that Phd1 also binds to genes that are key
to regulation of general stress responses
(MSN4, CUPY, and ZMSI) and metabolism
(HAP4).

These observations have several impor-
tant implications. The control of most, if not
all, cellular processes is characterized by net-
works of transcriptional regulators that regu-
late other regulators. It is also evident that the
effects of transcriptional regulator mutations
on global gene expression, as measured by
expression profiling (/, 4, 5, 19, 38—48), are
as likely to reflect the effects of the network
of regulators as they are to identify the direct
targets of a single regulator.

Significance of regulatory network in-
formation. This study identified network
motifs that provide specific regulatory capac-
ities for yeast, revealing the regulatory strat-
egies that were selected during evolution for
this eukaryote. These motifs can be used as
building blocks to construct large network
structures through an automated approach
that combines genome-wide location and ex-
pression data in the absence of prior knowl-
edge of regulator functions. The network of
transcriptional regulators that control other
transcriptional regulators is highly connected,
suggesting that the network substructures for
cellular functions such as cell cycle and de-
velopment are themselves coordinated at a
transcriptional level.

It is possible to envision mapping the regu-
latory networks that control gene expression
programs in considerable depth in yeast and in
other living cells. More complete understanding
of transcriptional regulatory networks in yeast
will require knowledge of regulator binding
sites under various growth conditions (17, 18)
and experimental testing of models that emerge
from computational analysis of regulator bind-
ing, gene expression, and other information.
The approach described here can also be used
to discover transcriptional regulatory networks
in higher eukaryotes. Knowledge of these net-
works will be important for understanding hu-
man health and designing new strategies to
combat disease.
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